Nanostructure and mechanical properties of aromatic polyamide and reactive organoclay nanocomposites

by M. U. Alvi, S. Zulfiqar, C. T. Yavuz, H.S. Kweon, M. I. Sarwar
Year: 2014 DOI: https://doi.org/10.1016/j.matchemphys.2014.06.001

Abstract

Aromatic polyamide/organoclay nanocomposites were synthesized using the solution blending technique. Treatment of montmorillonite clay with p-phenylenediamine produced reactive organophilic clay for good compatibility with the matrix. Polyamide chains were prepared by condensing a mixture of 1,4-phenylenediamine and 4-4′-oxydianiline with isophthaloyl chloride under anhydrous conditions. These chains were end capped with carbonyl chloride using 1% extra acid chloride near the end of reaction to develop the interactions with organoclay. The dispersion and structure–property relationship were monitored using FTIR, XRD, FE-SEM, TEM, DSC and tensile testing of the thin films. The structural investigations confirmed the formation of delaminated and disordered intercalated morphology with nanoclay loadings. This morphology of the nanocomposites resulted in their enhanced mechanical properties. The tensile behavior and glass transition temperature significantly augmented with increasing organoclay content showing a greater interaction between the two disparate phases.